Flats in Riemannian Submersions from Lie Groups
نویسنده
چکیده
We prove that any base space of Riemannian submersion from a compact Lie group (with bi-invariant metric) must have a basic property previously known for normal biquotients; namely, any zero-curvature plane exponentiates to a flat.
منابع مشابه
On Totally Geodesic Foliations and Doubly Ruled Surfaces in a Compact Lie Group
For a Riemannian submersion from a simple compact Lie group with a bi-invariant metric, we prove the action of its holonomy group on the fibers is transitive. As a step towards classifying Riemannian submersions with totally geodesic fibers, we consider the parameterized surface induced by lifting a base geodesic to points along a geodesic in a fiber. Such a surface is “doubly ruled” (it is rul...
متن کاملSome Principles for Deforming Nonnegative Curvature Peter Petersen and Frederick Wilhelm
Let N be the class of closed simply connected, smooth n–manifolds that admit nonnegative sectional curvature and let P be the corresponding class for positive curvature. Known examples suggest that N ought to be much larger than P . On the other hand, there is no known obstruction that distinguishes between the two classes. So its actually possible that N = P . In [PetWilh2] we will give a defo...
متن کاملRiemannian Submersions and Lattices in 2-step Nilpotent Lie Groups
We consider simply connected, 2-step nilpotent Lie groups N, all of which are diffeomorphic to Euclidean spaces via the Lie group exponential map exp : ˆ → N. We show that every such N with a suitable left invariant metric is the base space of a Riemannian submersion ρ : N* → N, where the fibers of ρ are flat, totally geodesic Euclidean spaces. The left invariant metric and Lie algebra of N* ar...
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملThe differential geometry of almost Hermitian almost contact metric submersions
Three types of Riemannian submersions whose total space is an almost Hermitian almost contact metric manifold are studied. The study is focused on fundamental properties and the transference of structures. 1. Introduction. In this paper, we discuss some geometric properties of Riemannian submersions whose total space is an almost Hermitian almost contact metric manifold. If the base space is an...
متن کامل